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Abstract. Commonly, the presence of grain boundaries in crystalline solids leads to enhanced
atomic transport because atoms can move faster along such two-dimensional lattice defects than
through the lattice itself. Recent experiments on gold diffusion into silicon, however, showed
for the first time a retardation of the metallic impurity incorporation in polycrystalline material
compared to that of monocrystals of the same host. The present paper provides a new model
that accounts for the experimental findings with regard to Si:Au. In addition, it may apply to
other systems in which a high mobility of the impurity in the lattice goes along with extremely
strong segregation effects.

1. Introduction

In the past few decades grain boundary (GB) diffusion in metals has been the subject of
extensive studies [1, 2]. As the most prominent result it is always found that both impurity
and self-atoms move faster along GBs than through the grains themselves (ignoring hydrogen
as the only established exception). To put this differently, the GB diffusion coefficientDb

is larger than the corresponding lattice diffusivityD. This may not surprise since GBs
represent disturbed lattice regions with reduced atomic density providing more space for
atomic displacements.

The circumstance that the diffusivity along GBs substantially exceeds that in the adjacent
lattice (Db � D) gives rise to a distinct temporal evolution of the in-diffusion process in
polycrystalline materials (i.e. with stationary grains). Following Harrison ([3]; see also
[4]), three major kinetic regimes designated by A, B, C may be distinguished in substrates
with grain sizeG, GB width δ ≈ 0.5 nm and segregation coefficients = Cb/C. The latter
dimensionless quantity reflects the ratio of the impurity (volume) concentration in GBs(Cb)

to that in the adjacent lattice (C) and is usually greater than one. Regimes A, B, C become
manifest in the diffusion profile, that is, by monitoring the average concentrationC̄ in layers
parallel to the (impurity-deposited) surface as a function of penetration depthy.

The diffusion process enters Harrison’s regime C immediately after the onset of
annealing and stays there for timest which are so short that(Dt)1/2 � (1/2)sδ. As
an implication, leakage of the impurity from the boundaries to the lattice is negligible.
In other words, atomic transport exclusively proceeds through GBs. For an inexhaustible
impurity source the diffusion profile adopts the complementary error function shape while
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Figure 1. Evolution of the impurity incorporation in polycrystalline materials with diffusion
time t . Upper half: kinetic regimes C, B, A forDb � D according to Harrison’s classification.
Lower half: kinetic regimesγ , β, α for εbsDb � D in conjunction withεbs � 1 according to
the present model. Transition times between different regimes are also indicated. Notation:
penetration depthy, grain sizeG, GB width δ, GB volume fractionεb and segregation
coefficients. Additional labelling ofD, Deff , Lβ ands in the lower half with the subscriptsi
or is makes this diagram specific for interstitial or interstitial–substitutional impurities (see the
text).

the penetration depthLC = (Dbt)
1/2 is determined by the GB diffusivity. These features

are indicated in figure 1.
Regime B is correlated with intermediate diffusion times restricted to(1/2)sδ �

(Dt)1/2 � G. Impurity incorporation in this regime is governed by long-distance penetration
along GBs and subsequent out-diffusion from the boundaries into the lattice. According
to Fisher’s approximation [5] this induces impurity profiles of exponential shape with
a characteristic depth scaleLB = (sδDb)

1/2(πt/4D)1/4 depending on bothDb and D

(cf. figure 1). In more elaborate treatments of Fisher’s model [2, 6] the initially predicted
proportionality lnC̄ ∝ y is modified to lnC̄ ∝ y6/5. This slight difference, however, is
hardly observable experimentally and not significant in the present context. More important
is the notion that within the time limits of regime B,LB exceeds the lattice diffusion length
(Dt)1/2.

Regime A establishes for(Dt)1/2 � G, which reflects that individual GBs must no
longer be regarded as isolated from each other after sufficiently long diffusion time. Rather
we are dealing with a situation in which diffusing impurities encounter several or many
GBs. Following Hart’s approach [7] (originally proposed for diffusion in dislocated crystals)
impurity incorporation is controlled by the effective diffusivity

Deff = (1 − τ)D + τDb (1)

whereτ and 1− τ refer to the fractions of time that a diffusing atom spends in GBs and the
lattice, respectively. The time fractionτ may be estimated from the relative abundancies
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Figure 2. A comparison of Au diffusion in poly- and monocrystalline silicon. Circles and
solid-line erfc fit: the195Au profile measured after 3600 s of diffusion at 1254 K into high-
purity polycrystalline Si [8]. Dashed line: the corresponding erfc profile for monocrystalline Si
based on an interpolation of experimental data [10, 11]. The differences in concentration levels
between the two profiles are arbitrary due to normalization along the ordinate.

of GB and lattice sites as

τ = εbCb

(1 − εb)C + εbCb

≈ εbs

1 + εbs
(2)

where the GB volume fractionεb � 1 is given by

εb = qδ

G
. (3)

The numerical factorq equals 3 for cubic grains and is close to 2 for real grain structures
[2]. Combining equations (1) and (2) leads to

Deff = D
1 + εbsDb/D

1 + εbs
. (4)

It is important to note that the common propertyDb > D implies thatDeff > D. To be
specific, the A-regime diffusivity given by equation (4) runs from the lattice diffusivityD

in coarse-grained polycrystals(εbsDb/D � 1) to the GB diffusivity Db in extreme cases
of ultrafine-grained material(εbs � 1) [2, 4].

In summary, we emphasize that forDb > D the overall impurity penetration tends to
be larger in polycrystals than in monocrystals of the same host material, irrespective of the
kinetic regime considered. Conversely, when experimental data show retarded diffusion
in polycrystals compared to corresponding monocrystals, this cannot be reconciled with
Db > D but rather points to the opposite condition. Observations of this kind have recently
been made for Au in Si [8, 9] as illustrated by figures 2 and 3. Specifically, it is seen
here that the penetration depths in polycrystalline Si are smaller than those corresponding
to the diffusion coefficients determined for monocrystalline samples [10, 11]. An extensive
account of the experimental findings will be given elsewhere [12]. In the present paper
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Figure 3. A comparison of Au diffusion in poly- and monocrystalline silicon. Circles and
straight-line fit: the195Au profile measured after 145 440 s of diffusion at 934 K into electronic-
grade polycrystalline Si with grain sizes around 30 mm [8]. Dashed line: the corresponding
erfc profile for monocrystalline Si based on an extrapolation of experimental data [10, 11].
Differences in concentration levels between the two profiles are arbitrary due to normalization
of ordinate values.

we propose a new kinetic model that explains crucial observations on the polycrystalline
Si:Au system. In addition, our concepts may be applicable to other impurity–host systems
in which fast lattice diffusion is accompanied by strong segregation effects and negligible
GB diffusion.

2. The theoretical model

2.1. Basic concepts

We start from the following assumptions applying to an impurity X in an otherwise pure
matrix.

(i) The impurity has a high diffusivityDi in the interstitial configuration Xi .
(ii) The impurity may strongly segregate to grain boundary sites B where it adopts the

Xb configuration.
(iii) The interaction between impurities and grain boundaries is described by the quasi-

chemical reaction

Xi + B
kb+↔
kb−

Xb + E (5)

where E stands for an empty interstitial site. The reaction rates in the forward and reverse
directions are denoted bykb+ andkb−, respectively.

(iv) Segregation is supposed to be linear (Henry-type), that is, impurity saturation effects
of the grain boundary are ignored.
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(v) Impurity diffusion along grain boundaries (GBs) characterized byDb proceeds much
more slowly than through the lattice. As will be discussed in section 3,Db may be envisaged
as the effective diffusivity of segregated impurities comprising mobile as well as immobile
atoms.

(vi) Grain boundary sites B are conceived to be randomly distributed over the volume.
This forms an adequate picture provided that the overall X-penetration depthy exceeds
the mean GB sizeG and that concentrations are averaged over planes parallel to the (flat)
surface (y = 0) intersecting many grains. The latter condition complies with the standard
radiotracer technique which includes serial sectioning of the diffused sample. Within this
framework the distinction betweenCj = Cj(x, y, z, t) and C̄j = C̄j (y, t) vanishes and the
upper bar indicating thin-layer averages will be dropped henceforward.

(vii) Interactions of the impurity with dislocations are considered to be negligible.

Several of these assumptions will be made specific below. In the general formulation
given above the evolution of the diffusion–segregation process with timet may be described
in one-dimensional geometry by the following equations:

∂Cb

∂t
= Db

∂2Cb

∂y2
+ (1 − εb)(kb+CiCb0 − kb−CbCi0) (6a)

∂Ci

∂t
= Di

∂2Ci

∂y2
− εb(kb+CiCb0 − kb−CbCi0). (6b)

HereCi = Ci(y, t) andCb = Cb(y, t) are volume concentrations of Xi and Xb, respectively.
Ci0 (Cb0) refers to the atomic site density of the interstitial lattice (grain boundaries) which
is likely to be close to the substitutional lattice site densityCs0 (e.g. 5.00×1028 m−3 for Si).
We emphasize thatCb is as usual defined with respect to the GB volume (and similarly,Ci

to the lattice volume). Directly connected with this, the factorεb in equation (6b) rescales
Cb andCb0 to the overall matrix volume. The corresponding factors 1− εb for Ci andCi0

cancel against each other on both sides of the equality sign in equation (6b). In contrast, in
equation (6a) εb is cancelled and 1− εb survives. In the following we take it for granted
that 1− εb ≈ 1 holds to a very good approximation†.

The equilibrium (or terminal) concentrations of Xi and Xb indicated byC
eq

i and C
eq

b ,
respectively, obey the mass action law with regard to equation (5), i.e.,

C
eq

b Ci0

C
eq

i Cb0
= kb+

kb−
. (7)

C
eq

i establishes by exchange with a second phase containing the impurity, e.g. ambient gas
or an alloy formed at the surface after deposition of pure X. In turn,C

eq

i determinesCeq

b

through equation (7). The terminal state of the reacting system described by equation (7)
must be differentiated from conditions oflocal dynamicequilibrium expressed as

CbCi0

CiCb0
= kb+

kb−
(8)

which may hold to a very good approximation for sufficiently long diffusion times. Based
on equations (5) and (8) we can distinguish between different kinetic regimes in the temporal
evolution of the impurity distribution.

(i) Regimeα: for long diffusion times local dynamic equilibrium among Xi and Xb is
settled almost wholly over the entire X-penetrated zone. It will be shown below that GB

† It should be noted that this approximation leads to symmetry breaking with respect to interchanging the role
of Xi and Xb. According to equation (3)εb < 0.01 is connected with grain sizes larger than 0.1µm, which
corresponds to common polycrystalline materials.
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segregation affects the depth but not the shape of the penetration profile characteristic for
lattice diffusion.

(ii) Regimeβ: for intermediate times segregation already controls the diffusion kinetics
but equilibrium among the reacting species according to equation (8) has not established
yet. This regime may be recognized from the modified shape of the X distribution with
respect to regimesα andγ .

(iii) Regime γ : shortly after the onset of diffusion the segregation effect is still very
minor. Incorporation of the impurity mainly takes place in the lattice and is governed by
the lattice diffusivity accordingly.

In the following sections we will derive expressions for the impurity distribution in
each kinetic regime. All solutions are given for constant boundary concentrations imposed
by an inexhaustible foreign-atom source. For the sake of clarity, we will deal with purely
interstitial impurities first and then treat the more elaborate case of so-called interstitial–
substitutional impurities. The latter case complies with recently obtained experimental data
on Au in Si [8, 9, 12].

2.2. Interstitial impurities

2.2.1. Regimeα: long diffusion times. From the validity of equation (8) after sufficiently
prolonged diffusion one obtains with the aid of equation (7)

Cb = C
eq

b

C
eq

i

Ci. (9)

Addition of equations (6a) and (6b) while accounting for the appropriate weighing factors
εb and 1− εb ≈ 1, respectively, yields the time derivative of the total X concentrationCt :

Ct = Ci + εbCb (10)

as

∂Ct

∂t
= Di

∂2Ci

∂y2
+ εbDb

∂2Cb

∂y2
. (11)

Using equation (9), this expression can be cast into the form of Fick’s second law, i.e.,

∂Ci

∂t
= ∂

∂y

(
D

eff

i

∂Ci

∂y

)
(12)

with

D
eff

i = C
eq

i Di + εbC
eq

b Db

C
eq

i + εbC
eq

b

= Di

1 + εbsiDb/Di

1 + εbsi

. (13)

Here the segregation coefficientsi is given by

si = C
eq

b

C
eq

i

. (14)

Note that the right-hand side of equation (13) coincides with equation (4) based on Hart’s
concept, which supports the validity of the present approach. Considering negligible
diffusivity along GBs (Db � Di) in conjunction with strong segregation(εbsi > 1) so
that

εbsiDb/Di � 1 (15)
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holds, equation (13) reduces to

D
eff

i = 1

1 + εbsi

Di. (16)

This effective diffusivity of any X atom reflects the fraction of diffusion time 1/(1 + εbsi)

spent in the mobile (Di-) configuration and a complementary time fraction spent in the
virtually immobile (Db ≈ 0) Xb configuration. SinceDeff

i does not depend on local vari-
ables, it generates profiles of complementary error function type:

Cj = C
eq

j erfc

(
y

2
√

D
eff

i t

)
(17)

for Xi , Xb and therefore all Xj (j = i, b, t) provided that the diffusion source does
not get exhausted. Notably, common radiotracer profiling techniques measure the total
concentrationCt .

2.2.2. Regimeγ : short diffusion times. As long as after the onset of the annealing treatment
segregation does not play a significant role, diffusion times may be considered as effectively
short. In this short-time regime, regimeγ , equation (6a) and the reaction term of equation
(6b) can be neglected. Impurity incorporation is then described to a good approximation by

∂Ci

∂t
= Di

∂2Ci

∂y2
(18)

inducing concentration–depth profiles of the form

Ci = C
eq

i erfc

(
y

2
√

Dit

)
. (19)

As will be shown below, the duration of the short-time period is connected with the
reciprocal forward reaction ratekb+.

2.2.3. Regimeβ: intermediate diffusion times.In this kinetic regime, segregation has
begun to substantially affect the diffusion process but Xb and Xi have not yet attained a
mutual state of local dynamical equilibrium. Hence, instead of equation (9) the inequality

Cb � C
eq

b

C
eq

i

Ci (20)

holds over almost the entire diffusion zone. Equation (20) implies, in conjunction with
equations (7) and (8), that the reverse reaction terms in equations (6) may be neglected with
respect to the forward terms, i.e.,

kb−CbCi0 � kb+CiCb0. (21)

Moreover, because of an approximate balance which establishes between Xi supply from
the surface and Xi removal by segregation to GBs, the intermediate stage is subject to
quasi-steady-state conditions; that is

∂Ci

∂t
≈ 0. (22)

The validity of this assumption has been confirmed by computer simulations [13, 14],
namely, for pairs of diffusion–reaction equations conformable to equations (6a) and (6b).
Inserting equations (21) and (22) into equation (6b) yields

∂2Ci

∂y2
= νi

Di

Ci (23)
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where the transition frequencyνi with dimension s−1 is given by

νi = εbkb+Cb0 = εbsikb−Ci0. (24)

Here, the right-hand-side equality follows from equations (7) and (14). The solution of
equation (23) for the pertinent boundary condition

Ci(y = 0, t) = C
eq

i (25)

reads

Ci = C
eq

i e−y/Li (26)

where

Li =
(

Di

νi

)1/2

(27)

may be conceived of as the mean free path of Xi atoms until they are captured by GBs.
Neglecting again diffusion along GBs (Db ≈ 0) and utilizing equations (21) and (26),
integration of equation (6a) leads to

Cb = kb+Cb0C
eq

i te−y/Li (28)

which complies with the appropriate initial condition

Cb(y, t = 0) = 0. (29)

The total concentration as measured for instance in a radiotracer experiment leads with the
aid of equations (10), (24), (25) and (27) to

Ct = (1 + νit)C
eq

i e−y/Li . (30)

2.2.4. Transient times.Now we will estimate the time limits within which the intermediate
diffusion regime develops. For this purpose the maximum or total equilibrium concentration
of X, C

eq
t , is written with the help of equations (10) and (14) as

C
eq
t = C

eq

i + εbC
eq

b = C
eq

i (1 + εbsi) (31)

and used together with equation (30) to normalize the actualCt -values in the intermediate
regime to

Ct

C
eq
t

=
(

1 + νit

1 + εbsi

)
e−y/Li . (32)

In order that the penetration profile be determined by segregation effects,εbCb must be
much larger thanCi . In terms of equations (30) or (32) this means thatνit � 1 must hold
leading to the lower time limit

τ
γβ

i = ν−1
i (33)

separating the intermediate diffusion regimeβ from the short-time regimeγ . The latter
regime prevails ifεbCb � Ci or t � τ

γβ

i . On the other hand, to maintain the steady-state
condition (22), Xb must stay far away from its saturation limit (cf. equation (21)). This is
reflected byCt(0, t) � C

eq
t or

1 + νit

1 + εbsi

� 1 (34)

imposing an upper time limit

τ
βα

i = εbsi

νi

= 1

kb−Ci0
(35)
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on the intermediate regimeβ. Within the present conditions of strong segregation(εbsi � 1)

it is easy to check thatτβα

i � τ
γβ

i . This implies that the time intervalτ γβ

i < t < τ
βα

i in
which type-β diffusion evolves widens with increasing segregation(si) and GB volume
(εb). When diffusion time exceedsτβα

i the impurity incorporation process runs into regime
α. The penetration profile thereby changes from an exponential-shaped to an erfc-like one
as revealed by equations (30) and (17), respectively.

2.3. Interstitial–substitutional impurities

2.3.1. Basic concepts and equations.Experimental evidence for the occurrence of
segregation-controlled diffusion emerged from the analysis of Au penetration profiles in
Si. Here we have to account for the circumstance that the impurity is accommodated by the
host lattice both interstitially (Xi) and substitutionally (Xs), the latter configuration being
more abundant(Ceq

s � C
eq

i ). Interchanges between these configurations may proceed either
via the kick-out mechanism

Xi + S
kI+↔
kI−

Xs + I (36)

involving self-interstitials (I) or through the dissociative mechanism

Xi + V
kV +↔
kV −

Xs + E (37)

requiring the participation of vacancies (V). In equation (36) S denotes an occupied
substitutional site of the host lattice.

A most general treatment would include, in addition to equations (6a) and (6b),
three more diffusion–reaction equations, i.e., those for Xs , I and V. In practice, however,
dislocations operate as sinks and sources for I and V. If the dislocation densities are high
enough, the intrinsic point defects are kept at their thermal equilibrium concentrations; that
is

CI = C
eq

I CV = C
eq

V . (38)

According to the mass action relationships associated with reactions (36) and (37) which
are similar to equations (7) and (8), one readily obtains by using equation (38)

Cs = C
eq

i

C
eq
s

Ci. (39)

The summation of the diffusion–reaction equation for Xs and equation (6b) for Xi yields

∂Cl

∂t
= Ds

∂2Cs

∂y2
+ Di

∂2Ci

∂y2
− εb(kb+CiCb0 − kb−CbCi0) (40)

where the lattice concentrationCl of X is given by

Cl = Ci + Cs. (41)

For interstitial–substitutional impurities, equation (40) replaces equation (6b) while
equation (6a) remains valid. In equation (40) we ignore purely substitutional diffusion
through Xs–V exchanges commonly known as the vacancy mechanism, i.e.Ds ≈ 0, or
more correctlyCeq

s Ds � C
eq

i Di [15, 16] (cf. equation (43)). Further, we introduce

νis = C
eq

i

C
eq

i + C
eq
s

εbkb+Cb0 = C
eq

i

C
eq

i + C
eq
s

νi (42)
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as the transition frequency of an average X atom in the lattice to an adjacent GB site,

Dis = C
eq

i

C
eq

i + C
eq
s

Di (43)

as the effective diffusivity of such X atoms being alternately on interstitial and substitutional
sites, and

sis = C
eq

b

C
eq

l

= C
eq

i

C
eq

i + C
eq
s

si (44)

as the proper GB segregation coefficient with regard to the total equilibrium concentration
in the latticeC

eq

l = C
eq

i + C
eq
s . Using equations (39) and (41) to (44), it is straightforward

to rearrange equations (6a) and (40) to

∂Cb

∂t
= Db

∂2Cb

∂y2
+ C

eq

i + C
eq
s

C
eq

i

νis

εb

Ci − νis

εbsis

Cb (45a)

and

∂Ci

∂t
= Dis

∂2Ci

∂y2
−

(
νisCi − C

eq

i

C
eq

i + C
eq
s

νis

sis

Cb

)
(45b)

respectively.

2.3.2. Kinetic regimes and diffusion profiles.The combined solution of equations (45a) and
(45b) for interstitial–substitutional impurities produces similar kinetic regimes with similar
diffusion profiles to that of equations (6a) and (6b) for purely interstitial impurities outlined
in section 2.2. In particular, for diffusion times longer than

τ
βα

is = εbsis

νis

(46)

the X-incorporation process enters into regimeα characterized by congruent erfc profiles
of Ci, Cs andCb and thus of the total concentration

Ct = Ci + Cs + εbCb. (47)

The effective diffusivity in regimeα reads in analogy to equation (16)

D
eff

is = 1

1 + εbsis

Dis (48)

with Dis andsis defined by equations (43) and (44). Obviously, this case is realized in the
Si:Au experiment represented by figure 2.

For times distinctly shorter than

τ
γβ

is = 1

νis

= τ
γβ

i

C
eq

i + C
eq
s

C
eq

i

(49)

equations (45a) and (45b) predict a constant effective diffusivityDis for both Xi and Xs

which reflects in contrast to equation (48) the absence of segregation effects. Accordingly,
the X distribution in this short-time regime, regimeγ , evolves as

Cl = C
eq

l erfc

(
y

2
√

Dist

)
. (50)

For intermediate timesτ γβ

is � t � τ
βα

is the diffusion behaviour obeys regime-β kinetics
described by

Ct = (1 + νis t)C
eq

l e−y/Lis (51)
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with the characteristic diffusion length

Lis =
(

Dis

νis

)1/2

. (52)

Experimental evidence for the occurrence of this type of behaviour is provided by figure 3.

3. Discussion

On the basis of equations (30) and (51) the mean square penetration〈y2〉β of impurity atoms
in regimeβ is given by

〈y2〉β = 2(L
β

k )2 = 2Dkν
−1
k = 2Dkτ

γβ

k (53)

for k = i, is. The fact that〈y2〉β does not depend on diffusion timet complies with the quasi-
steady-state conditions in this kinetic regime. Consistently with the Einstein–Smoluchowski
relationship,τ γβ

k has to be interpreted as the impurity mean time of residence in the lattice
(characterized by diffusivityDk) before being captured by a GB. Ignoring the unlikely
situation that the transition from interstitial lattice sites to adjacent GB sites is considerably
hampered by reaction barriers,τ

γβ

k reflects the average time needed to traverse a grain, i.e.,

τ
γβ

k ≈ G2

2Dk

(54)

for k = i, is. Accordingly, L
β

k (or more precisely
√

2L
β

k ) is intimately connected with
the average grain sizeG. In terms of reaction-rate theory [17, 18] this means thatkb+ is
diffusion limited rather than reaction limited. Yet the impurity incorporation in regimeβ

is significantly affected by the rate of segregation to grain boundaries and therefore may
be conceived as being controlled by segregation or reaction. This is reflected by equations
(27) and (30) or equations (51) and (52).

The above interconnection betweenLβ andG offers a clue to how to identify the present
type of diffusion via experiments on polycrystalline material with known grain structure.
We note that theLβ-values deduced from measured linear-type logC versusy profiles for
diffusion of Au into Si (figure 3; see also [8, 12]) are compatible with the grain size of the
sample materials employed. In general, however,Lβ will also depend on grain structure
(shape, size distribution, etc). This may be formally accounted for by including geometrical
factors in the reaction constants entering equations (6a) and (6b). Such fine-tuning of the
basic model is beyond the scope of the present first-order approach and therefore remains
a future task. To some extent, the geometrical conditions are considered by takingq = 2
in equation (3).

Previous theoretical treatments of diffusion into polycrystalline matrices by Bokshstein
et al [19] or Levine and MacCallum [20] explicitly take into account the special geometrical
situation in polycrystals as compared to bicrystals. Although these treatments have their own
merits, they naturally involve some approximations (like e.g. the assumption of spherical
grains [19]), only apply to the case where (1)Db � D, and moreover, are restricted to (2)
low segregation levels and (3) equilibrium (detailed balance) between the diffusant in GBs
and in the adjacent lattice (cf. [2]). By contrast, the present model deals with the essentially
new situation where (1)Db � D and further makes allowance for (2) strong segregation,
which in conjunction leads to (3) non-equilibrium between GB and lattice impurities. An
extension of the standard models [19, 20] to the new conditions does not seem trivial and
may form an attractive challenge for theoreticians in this field of research.
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As a special feature, the present model includes blocking effects due to transversal grain
boundaries characterized (like the other GBs) byDb � D. Impurity atoms trapped by GBs
become virtually immobile. At the bulk side of transversal boundaries these atoms may leak
into deeper-lying grains in accordance with the reverse direction of equation (5). According
to e.g. equations (20) and (21) this effect is not substantial until considerable accumulation
of the impurity has taken place. Strong blocking at some lateral positions at a certain depth
y are compensated by weak or negligible blocking conditions in other areas of the same
depth layer. So, in terms of concentration averaged overxz-planes the physical situation is
adequately reproduced by the quasi-continuum approach developed in the present paper.

Figure 1 gives a survey of the various kinetic regimes that may be encountered in
impurity diffusion in polycrystalline materials. The upper half of this diagram compiles
the profile shapes and key parameters characterizing the well known diffusion behaviour of
types A, B and C forDb � D as outlined in the introduction. Transition times between the
different regimes are also indicated [2, 4]. The lower half of figure 1 summarizes the stages
of impurity incorporation derived under conditions of strong segregation and forDb � D.
Both interstitial and interstitial–substitutional impurities are comprised by the additional
labelling of D, Deff , Lβ and s with the corresponding subscriptsi or is, which is left to
the reader.

It is remarkable that the two completely different physical situations under consideration
(Db � D versusDb � D) produce the same sequence of profile shapes, i.e., erfc,
exponential-type, erfc. A distinction can only be made on the basis of quantitative analysis.
As the most significant feature forDb � D, impurity diffusion in polycrystals is enhanced
with regard to that for single crystals of the same material. This may be recognized from the
typical penetration lengthsLC = (Dbt)

1/2, LB (see figure 1) andLA = (Deff t)1/2 which
exceed(Dt)1/2 indicative of lattice diffusion. By contrast, forDb � D the pertaining
penetration lengthsLγ = (Dt)1/2, Lβ (see figure 1) andLα = (Deff t)1/2 are smaller than
or equal to(Dt)1/2. Other criteria for discriminating between the two physical situations
relate to the different nature ofLB and Lβ ≈ G/

√
2 and to dissimilar transition times,

e.g.,τCB in comparison withτ γβ (see figure 1).
In fact, for interstitial–substitutional impurities the sequence of kinetic regimes has an

extension (not shown in figure 1) towards lower diffusion times. This is connected with the
establishment of local dynamic equilibrium between Xi and Xs as treated in the literature
[13, 14]. Starting in regimeγ and reducing diffusion time more and more we enter regime
δ bounded byτ εδ

is � t � τ
δγ

is with

τ εδ
is = C

eq

i

C
eq
s

τ
δy

is = 1

kI+Cs0 + kV +C
eq

V

. (55)

Here kI+, kV + denote the Xi–Xs transition rates associated with reactions (36) and (37),
respectively. Regimeδ may be recognized from exponential-type profiles with the specific
penetration depthLδ = (Diτ

εδ
is )1/2 < Lβ . For times even shorter thanτ εδ the transition

from Xi to Xs has not started yet. In the corresponding regime, regimeε, diffusion proceeds
purely interstitially, generating erfc profiles of typical depth(Dit)

1/2 (cf. equation (19)).
Although the present paper does not aim at disclosing the physical reasons for the

occurrence of segregation-controlled impurity diffusion, a few general comments seem
appropriate. The type of diffusion under consideration is characterized byεbs � 1 and
εbsDb � D. Segregation to GBs appears to be inversely correlated with lattice solubility
[21]. Thus, extremely high segregation coefficientss may be expected for a system like
Si:Au which has a maximum solubility of 2× 1017 cm−3 (attained about 100 K below
the melting pointTm of pure Si) and solubilities in the ppb range or below at moderate
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temperatures still accessible in diffusion experiments. Segregation can be further enhanced
by the accompanying reduction of the GB energy [21]. An extreme example of GB saturation
by impurities has been recently reported by Charaı̈ and Rouvìere [22] for S in Ge. It is
conceivable that extremely high impurity concentrations in GBs lead to blocking effects
with regard to atomic transport and thus to lowDb-values.

The circumstance that the diffusion behaviour treated here has been observed
experimentally [8, 9, 12] for an interstitial–substitutional impurity (Au in Si [10]) gives
rise to the following considerations. For impurities of this type, the lattice diffusivityDis

is given (under conditions of thermal equilibrium for vacancies and self-interstitials) by the
interstitial diffusivity reduced by the factorCeq

i /(C
eq

i + C
eq
s ) representing the fraction of

interstitial atoms (cf. equation (43)). SinceDi is large (10−4–10−6 cm2 s−1 in the high-
temperature range) andCeq

i /(C
eq

i + C
eq
s ) not too small (10−1–10−4) an appreciable lattice

diffusivity results which exceeds the estimated purely substitutional diffusivity through Xs–
vacancy exchanges by orders of magnitude. It is further emphasized that the magnitude of
the interstitial fraction depends sensitively on the atomic binding conditions in the interstices
as well as on regular lattice sites.

Similarly, in GBs and their close vicinity one may distinguish between loosely bound
impurity atoms with high mobility(Cb,m; Db,m) and tightly bound atoms which are virtually
immobile(Cb,im; Db,im ≈ 0). When it is tentatively assumed that the diffusivityDb,m of the
mobile GB species compares toDi , low effective GB diffusion coefficients may originate
from mobile fractionsCb,m/(Cb,m + Cb,im) much smaller thanCeq

i /(C
eq

i + C
eq
s ). In this

way Db � D can be rationalized for interstitial–substitutional impurities.

4. Summary

Inspired by recent experimental observations regarding Au in Si, a new model has been
proposed for impurity diffusion in polycrystalline materials. Specifically, the model applies
to host material/impurity systems with the following properties:

(i) high diffusivity of the impurity through the lattice;
(ii) negligible diffusion along GBs; and
(iii) strong segregation to GBs which implies weak solubility in the lattice.

Experimentally, this particular combination of properties may be revealed by the
following observations.

(1) The temporal evolution of the diffusion profile at constant temperature reveals a
distinct sequence of shapes—erfc-like, exponential, erfc-like—characterizing the kinetic
regimesγ , β andα, respectively.

(2) In the short-time regime, regimeγ , the penetration depth is determined by the lattice
diffusivity D of the impurity.

(3) In the intermediate regime, regimeβ, the mean penetration depth reflects the grain
sizeG of the substrate.

(4) Transition from regimeγ to regimeβ occurs after a diffusion time approximated
by G2/2D.

(5) After long diffusion times (regimeα), penetration depth is reduced with respect to
monocrystals of the same host material as well as compared to regimeγ .

(6) GBs are enriched by impurities in regimesβ andα.
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